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Clemson HEC Filesystem Research

● Two teams
– Research team

● ECE Dept
● HECURA
● Simulation, metadata, semantics

– Development team
● CCIT
● ACS
● Server-to-server, caching, security
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Project Objectives

● Develop an extensible parallel file system 
simulation tool

● Study
– Server-to-server communication
– Run-time configurable semantics/caching

● Address
– Scalable metadata
– Scalable small and unaligned access
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Program Areas Addressed

●Scalable metadata operations
●Scalable small and unaligned operations
●I/O middleware
●Active caching
●Server to server communication
●Simulation of I/O, file, and storage systems



08/05/08 5

Progress To Date

● Development of HECIOS simulator done
● Tuning and validation
● Scalable metadata

– Server-to-server communication
– Collective communication

● Client caching
– Shared between threads
– Data layout aware
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HECIOS Architecture
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Traces

● Developed 2 trace formats
– SHTF (the serial HECIOS trace format)
– PHTF (the parallel HECIOS trace format).
– Both are constructed from ltrace traces

● Successfully used traces from the LANL-trace 
repository

● Used the LANL Trace library to trace BT-IO and 
Flash-IO benchmarks
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Issues in Trace Library
● Uses ltrace for tracing

– Modified ltrace regular expressions to capture the fortran 
MPI calls in BT-IO

● LTrace cannot output more than 5 parameters
– Created a custom ltrace.conf file to support big MPI calls

● Ltrace won't dereference pointers
– Wrote a patch for mpich2 that will output those parameters 

in printf calls
– Fortran is pass by reference, every call just gives address
– Ideally, might need to fork ltrace and add this ability
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Tuning and Validation

● Tuning
– Instrumented PVFS

● Server components (request process, trove, disk time, etc.)
● Client components (request setup, network overhead, etc.)

● Validation
– Simple applications – single server (cp, rm, etc.)
– Phil Carns' prototype results as a comparison

● Server-to-server/collective communications
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PVFS/TCP Create Time
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PVFS/GM Create Time
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HECIOS Create Times
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Middleware Cache Experiments

● Multi-core shared cache
– cores/cache
– concurrent access issues
– size/associativity

● File view based cache
– FS access efficiency
– coherency effects
– combining views
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Development Activities

● Server-to-server implementation
– Metadata operations
– Redundancy

● Capability-based security
– External authentication (pam, kerberos, federated)
– “Unix-level” security 

● Middleware caching
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New Directions

● The River Model
– Environment support for building applications
– Component based
– Automated memory and IO management
– Based on DeBardeleben's Coven
– Modified for script-based applications
– Brings HEC results back to GP computing


